Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. / Gokhin, David S; Ochala, Julien; Domenighetti, Andrea A; Fowler, Velia M.

I: Development (Cambridge, England), Bind 142, Nr. 24, 15.12.2015, s. 4351-62.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Gokhin, DS, Ochala, J, Domenighetti, AA & Fowler, VM 2015, 'Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle', Development (Cambridge, England), bind 142, nr. 24, s. 4351-62. https://doi.org/10.1242/dev.129171

APA

Gokhin, D. S., Ochala, J., Domenighetti, A. A., & Fowler, V. M. (2015). Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development (Cambridge, England), 142(24), 4351-62. https://doi.org/10.1242/dev.129171

Vancouver

Gokhin DS, Ochala J, Domenighetti AA, Fowler VM. Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development (Cambridge, England). 2015 dec. 15;142(24):4351-62. https://doi.org/10.1242/dev.129171

Author

Gokhin, David S ; Ochala, Julien ; Domenighetti, Andrea A ; Fowler, Velia M. / Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. I: Development (Cambridge, England). 2015 ; Bind 142, Nr. 24. s. 4351-62.

Bibtex

@article{1aa6d26fb7494fcabbc3afc3f1593604,
title = "Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle",
abstract = "The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4(-/-) mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4(-/-) muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts. ",
keywords = "Actin Cytoskeleton/metabolism, Animals, Down-Regulation/genetics, Female, Gene Deletion, Gene Knockdown Techniques, Mice, Inbred C57BL, Microfilament Proteins/metabolism, Muscle Proteins/metabolism, Muscle, Skeletal/metabolism, Phenotype, Protein Isoforms/metabolism, RNA Interference, Sarcomeres/metabolism, Tropomodulin/deficiency, Up-Regulation/genetics",
author = "Gokhin, {David S} and Julien Ochala and Domenighetti, {Andrea A} and Fowler, {Velia M}",
note = "{\textcopyright} 2015. Published by The Company of Biologists Ltd.",
year = "2015",
month = dec,
day = "15",
doi = "10.1242/dev.129171",
language = "English",
volume = "142",
pages = "4351--62",
journal = "Development",
issn = "0950-1991",
publisher = "The Company of Biologists",
number = "24",

}

RIS

TY - JOUR

T1 - Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle

AU - Gokhin, David S

AU - Ochala, Julien

AU - Domenighetti, Andrea A

AU - Fowler, Velia M

N1 - © 2015. Published by The Company of Biologists Ltd.

PY - 2015/12/15

Y1 - 2015/12/15

N2 - The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4(-/-) mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4(-/-) muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts.

AB - The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4(-/-) mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4(-/-) muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts.

KW - Actin Cytoskeleton/metabolism

KW - Animals

KW - Down-Regulation/genetics

KW - Female

KW - Gene Deletion

KW - Gene Knockdown Techniques

KW - Mice, Inbred C57BL

KW - Microfilament Proteins/metabolism

KW - Muscle Proteins/metabolism

KW - Muscle, Skeletal/metabolism

KW - Phenotype

KW - Protein Isoforms/metabolism

KW - RNA Interference

KW - Sarcomeres/metabolism

KW - Tropomodulin/deficiency

KW - Up-Regulation/genetics

U2 - 10.1242/dev.129171

DO - 10.1242/dev.129171

M3 - Journal article

C2 - 26586224

VL - 142

SP - 4351

EP - 4362

JO - Development

JF - Development

SN - 0950-1991

IS - 24

ER -

ID: 240788487