Direct Cu-mediated aromatic18F-labeling of highly reactive tetrazines for pretargeted bioorthogonal PET imaging
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Dokumenter
- Fulltext
Forlagets udgivne version, 1,91 MB, PDF-dokument
Pretargeted imaging can be used to visualize and quantify slow-accumulating targeting vectors with short-lived radionuclides such as fluorine-18 - the most popular clinically applied Positron Emission Tomography (PET) radionuclide. Pretargeting results in higher target-to-background ratios compared to conventional imaging approaches using long-lived radionuclides. Currently, the tetrazine ligation is the most popular bioorthogonal reaction for pretargeted imaging, but a direct18F-labeling strategy for highly reactive tetrazines, which would be highly beneficial if not essential for clinical translation, has thus far not been reported. In this work, a simple, scalable and reliable direct18F-labeling procedure has been developed. We initially studied the applicability of different leaving groups and labeling methods to develop this procedure. The copper-mediated18F-labeling exploiting stannane precursors showed the most promising results. This approach was then successfully applied to a set of tetrazines, including highly reactive H-tetrazines, suitable for pretargeted PET imaging. The labeling succeeded in radiochemical yields (RCYs) of up to approx. 25%. The new procedure was then applied to develop a pretargeting tetrazine-based imaging agent. The tracer was synthesized in a satisfactory RCY ofca.10%, with a molar activity of 134 ± 22 GBq μmol−1and a radiochemical purity of >99%. Further evaluation showed that the tracer displayed favorable characteristics (target-to-background ratios and clearance) that may qualify it for future clinical translation.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Chemical Science |
Vol/bind | 12 |
Udgave nummer | 35 |
Sider (fra-til) | 11668-11675 |
ISSN | 2041-6520 |
DOI | |
Status | Udgivet - 2021 |
Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk
ID: 281602615