Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

L Goujon, G Allevato, G Simonin, L Paquereau, A Le Cam, J Clark, J Djiane, M C Postel-Vinay, Jens Høiriis Nielsen, M Edery

To study structure-function relationships of the growth hormone (GH) receptor (GHR), two functional systems have been developed. CHO cells were transiently cotransfected with the cDNA encoding the full-length rat GHR and with a construct consisting of the 5' flanking region of one of two GH-dependent genes encoding ovine beta-lactoglobulin or serine protease inhibitor 2.1 (Spi 2.1, formerly Spi.1; the corresponding rat gene has recently been redesignated Spin2a) coupled to the bacterial reporter gene encoding chloramphenicol acetyltransferase (CAT). Transfected cells were grown in the absence and presence of human GH and dexamethasone for the Spi 2.1 gene construct. GH was able to activate each promoter (with approximately 4-fold induction of CAT activity) in a dose-dependent manner. For both tests, the maximal effect was observed at 20 nM human GH. These tests have been used to identify functional domains of the GHR. Two truncated (T) GHRs, lacking most or part of the cytoplasmic domain [called T276 (ending at residue 276) and T436 (ending at residue 436)], were unable to stimulate CAT activity. The GHR contains a proline-rich region, called "Box I," conserved in the cytokine/GH/prolactin receptor family. Alanine substitutions for the four prolines of GHR Box I were introduced. Single proline-to-alanine mutations did not affect the functional activity of the GHR. However, modification of the four prolines together or deletion of the Box I (15 amino acids between positions 279 and 293) resulted in the complete absence of GH stimulation. Thus, the proline-rich region, shown to be important for other members of this receptor superfamily, is also critical for GH signal transduction.
OriginalsprogEngelsk
TidsskriftProceedings of the National Academy of Sciences of the United States of America
Vol/bind91
Udgave nummer3
Sider (fra-til)957-61
Antal sider5
ISSN0027-8424
StatusUdgivet - 1 feb. 1994

ID: 47973284