Three steps towards comparability and standardization among molecular methods for characterizing insect communities

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 784 KB, PDF-dokument

Molecular methods are currently some of the best-suited technologies for implementation in insect monitoring. However, the field is developing rapidly and lacks agreement on methodology or community standards. To apply DNA-based methods in large-scale monitoring, and to gain insight across commensurate data, we need easy-to-implement standards that improve data comparability. Here, we provide three recommendations for how to improve and harmonize efforts in biodiversity assessment and monitoring via metabarcoding: (i) we should adopt the use of synthetic spike-ins, which will act as positive controls and internal standards; (ii) we should consider using several markers through a multiplex polymerase chain reaction (PCR) approach; and (iii) we should commit to the publication and transparency of all protocol-associated metadata in a standardized fashion. For (i), we provide a ready-to-use recipe for synthetic cytochrome c oxidase spike-ins, which enable between-sample comparisons. For (ii), we propose two gene regions for the implementation of multiplex PCR approaches, thereby achieving a more comprehensive community description. For (iii), we offer guidelines for transparent and unified reporting of field, wet-laboratory and dry-laboratory procedures, as a key to making comparisons between studies. Together, we feel that these three advances will result in joint quality and calibration standards rather than the current laboratory-specific proof of concepts. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.

OriginalsprogEngelsk
Artikelnummer20230118
TidsskriftPhilosophical Transactions of the Royal Society B: Biological Sciences
Vol/bind379
Udgave nummer1904
Antal sider10
ISSN0962-8436
DOI
StatusUdgivet - 2024

Bibliografisk note

Publisher Copyright:
© 2024 The Authors.

ID: 392659239