The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. / Paguigan, Noemi D.; Yan, Yannan; Karthikeyan, Manju; Chase, Kevin; Carter, Jackson; Leavitt, Lee S.; Lim, Albebson L.; Lin, Zhenjian; Memon, Tosifa; Christensen, Sean; Bentzen, Bo H.; Schmitt, Nicole; Reilly, Christopher A.; Teichert, Russell W.; Raghuraman, Shrinivasan; Olivera, Baldomero M.; Schmidt, Eric W.

I: ACS chemical biology, Bind 16, Nr. 9, 2021, s. 1654-1662.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Paguigan, ND, Yan, Y, Karthikeyan, M, Chase, K, Carter, J, Leavitt, LS, Lim, AL, Lin, Z, Memon, T, Christensen, S, Bentzen, BH, Schmitt, N, Reilly, CA, Teichert, RW, Raghuraman, S, Olivera, BM & Schmidt, EW 2021, 'The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons', ACS chemical biology, bind 16, nr. 9, s. 1654-1662. https://doi.org/10.1021/acschembio.1c00328

APA

Paguigan, N. D., Yan, Y., Karthikeyan, M., Chase, K., Carter, J., Leavitt, L. S., Lim, A. L., Lin, Z., Memon, T., Christensen, S., Bentzen, B. H., Schmitt, N., Reilly, C. A., Teichert, R. W., Raghuraman, S., Olivera, B. M., & Schmidt, E. W. (2021). The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. ACS chemical biology, 16(9), 1654-1662. https://doi.org/10.1021/acschembio.1c00328

Vancouver

Paguigan ND, Yan Y, Karthikeyan M, Chase K, Carter J, Leavitt LS o.a. The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. ACS chemical biology. 2021;16(9):1654-1662. https://doi.org/10.1021/acschembio.1c00328

Author

Paguigan, Noemi D. ; Yan, Yannan ; Karthikeyan, Manju ; Chase, Kevin ; Carter, Jackson ; Leavitt, Lee S. ; Lim, Albebson L. ; Lin, Zhenjian ; Memon, Tosifa ; Christensen, Sean ; Bentzen, Bo H. ; Schmitt, Nicole ; Reilly, Christopher A. ; Teichert, Russell W. ; Raghuraman, Shrinivasan ; Olivera, Baldomero M. ; Schmidt, Eric W. / The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. I: ACS chemical biology. 2021 ; Bind 16, Nr. 9. s. 1654-1662.

Bibtex

@article{24365b799eaf4790998df509fe628d34,
title = "The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons",
abstract = "Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions. ",
author = "Paguigan, {Noemi D.} and Yannan Yan and Manju Karthikeyan and Kevin Chase and Jackson Carter and Leavitt, {Lee S.} and Lim, {Albebson L.} and Zhenjian Lin and Tosifa Memon and Sean Christensen and Bentzen, {Bo H.} and Nicole Schmitt and Reilly, {Christopher A.} and Teichert, {Russell W.} and Shrinivasan Raghuraman and Olivera, {Baldomero M.} and Schmidt, {Eric W.}",
year = "2021",
doi = "10.1021/acschembio.1c00328",
language = "English",
volume = "16",
pages = "1654--1662",
journal = "A C S Chemical Biology",
issn = "1554-8929",
publisher = "American Chemical Society",
number = "9",

}

RIS

TY - JOUR

T1 - The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons

AU - Paguigan, Noemi D.

AU - Yan, Yannan

AU - Karthikeyan, Manju

AU - Chase, Kevin

AU - Carter, Jackson

AU - Leavitt, Lee S.

AU - Lim, Albebson L.

AU - Lin, Zhenjian

AU - Memon, Tosifa

AU - Christensen, Sean

AU - Bentzen, Bo H.

AU - Schmitt, Nicole

AU - Reilly, Christopher A.

AU - Teichert, Russell W.

AU - Raghuraman, Shrinivasan

AU - Olivera, Baldomero M.

AU - Schmidt, Eric W.

PY - 2021

Y1 - 2021

N2 - Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.

AB - Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.

UR - http://www.scopus.com/inward/record.url?scp=85114422519&partnerID=8YFLogxK

U2 - 10.1021/acschembio.1c00328

DO - 10.1021/acschembio.1c00328

M3 - Journal article

C2 - 34423964

AN - SCOPUS:85114422519

VL - 16

SP - 1654

EP - 1662

JO - A C S Chemical Biology

JF - A C S Chemical Biology

SN - 1554-8929

IS - 9

ER -

ID: 285240579