The Cysteine Protease Legumain Is Upregulated by Vitamin D and Is a Regulator of Vitamin D Metabolism in Mice

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 3,12 MB, PDF-dokument

Legumain is a lysosomal cysteine protease that has been implicated in an increasing amount of physiological and pathophysiological processes. However, the upstream mechanisms regulating the expression and function of legumain are not well understood. Here, we provide in vitro and in vivo data showing that vitamin D3 (VD3) enhances legumain expression and function. In turn, legumain alters VD3 bioavailability, possibly through proteolytic cleavage of vitamin D binding protein (VDBP). Active VD3 (1,25(OH)2D3) increased legumain expression, activity, and secretion in osteogenic cultures of human bone marrow stromal cells. Upregulation of legumain was also observed in vivo, evidenced by increased legumain mRNA in the liver and spleen, as well as increased legumain activity in kidneys from wild-type mice treated with 25(OH)D3 (50 µg/kg, subcutaneously) for 8 days compared to a control. In addition, the serum level of legumain was also increased. We further showed that active legumain cleaved purified VDBP (55 kDa) in vitro, forming a 45 kDa fragment. In vivo, no VDBP cleavage was found in kidneys or liver from legumain-deficient mice (Lgmn−/−), whereas VDBP was cleaved in wild-type control mice (Lgmn+/+). Finally, legumain deficiency resulted in increased plasma levels of 25(OH)D3 and total VD3 and altered expression of key renal enzymes involved in VD3 metabolism (CYP24A1 and CYP27B1). In conclusion, a regulatory interplay between VD3 and legumain is suggested.
OriginalsprogEngelsk
Artikelnummer36
TidsskriftCells
Vol/bind13
Udgave nummer1
Antal sider16
ISSN2073-4409
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
This work was supported by the Olav Thon Foundation and the University of Oslo, Norway; University of Copenhagen, Odense University Hospital, and University of Southern Denmark, Denmark; Garvan Institute of Medical Research and St. Vincent’s Clinical School, Sydney, Australia; Gerda og Aage Haenschs Fond, Direktør Michael Hermann Nielsens mindelegat, Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis’ Legat; and The Norwegian Pharmaceutical Society.

Funding Information:
Hilde Nilsen is highly acknowledged for the technical assistance and the OPEN Lab, Odense University Hospital (OUH), for performing VDBP ELISA (financially supported by the Research Council at OUH). R.S. is a member of the COST action CA20113 ProteoCure (A sound proteome for a sound body: targeting proteolysis for proteome remodeling).

Publisher Copyright:
© 2023 by the authors.

ID: 379651405