Laser ablation (in situ) Lu-Hf geochronology of epidote group minerals

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 15,9 MB, PDF-dokument

  • Jie Yu
  • Stijn Glorie
  • Martin Hand
  • Alexander Simpson
  • Sarah Gilbert
  • Szilas, Kristoffer
  • Nick Roberts
  • Mark Pawley
  • Yanbo Cheng

Epidote group minerals, including allanite, clinozoisite and epidote are common in a range of metamorphic, igneous and hydrothermal systems, and are stable across a wide range of pressure–temperature (P–T) conditions. These minerals can incorporate substantial amounts of rare earth elements (REEs) during their crystallisation, making them potential candidates for Lu–Hf geochronology to provide age constraints on various geological processes. Here we report on a first exploration into the feasibility of in situ Lu–Hf geochronology for epidote group minerals from various geological settings and compare the results with age constraints from other geochronometers. Magmatic allanite samples from pegmatites and monzogranites in the Greenland anorthosite complex, Coompana Province and Qingling Orogen provided dates consistent with magmatic events spanning from c. 2660 to 1171 Ma. In the Qingling pegmatites, a younger phase of hydrothermal allanite was dated at c. 215 Ma, consistent with the timing of regional REE mineralisation. Allanite from the Yambah Shear Zone, Strangways Metamorphic Complex, yielded Lu–Hf age of c. 430 Ma. It predates the garnet and apatite growth at c. 380 Ma, suggesting the Lu–Hf system can be preserved in allanite during prograde amphibolite-facies metamorphism. Additionally, Lu–Hf dates for hydrothermal clinozoisite and epidote are consistent with the timing of hydrothermal alteration and mineralisation in a range of settings, demonstrating the utility of the technique for mineral exploration. Despite the current lack of matrix-matched reference materials, the successful application of laser ablation Lu–Hf geochronology to epidote group minerals offers valuable geochronological insights into various geological processes that can be difficult to access through other geochronometers.

OriginalsprogEngelsk
Artikelnummer62
TidsskriftContributions to Mineralogy and Petrology
Vol/bind179
Antal sider26
ISSN0010-7999
DOI
StatusUdgivet - 2024

Bibliografisk note

Publisher Copyright:
© The Author(s) 2024.

ID: 394700650