An isotope study on nitrogen and phosphorus use efficiency and movement in soil in a mimicked vermicompost-based organo-mineral fertilizer

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,3 MB, PDF-dokument

  • Tomas J. Sitzmann
  • Sica, Pietro
  • Laura Zavattaro
  • Barbara Moretti
  • Carlo Grignani
  • Astrid Oberson

Vermicompost (VC), a stabilized organic material with high organic and humic carbon, and favorable aggregation properties, was tested as a fraction of organo-mineral fertilizers (OMFs), where organic and mineral fractions interact in hotspot areas with surrounding soil. Solutions containing 33P radioisotope and 15N-labeled mineral fertilizers were combined with VC at two ratios of organic carbon (Corg) to mineral nitrogen (N) and phosphorus (P) (OMF7.5C and OMF15C) to simulate OMF granules. Control treatments included unfertilized soil (N0P0), mineral fertilizer (MFNP), and sole VC at two rates (OF7.5C and OF15C). Nitrogen and P uptake by Italian ryegrass (Lolium multiflorum) were measured over in 8 weeks. Furthermore, MFNP, OMF7.5C, and OMF15C treatments were incubated for 10 days without plant to measure atom% 15N excess and 33P radioactivity, as indicators of N and P movement from two soil layers (surrounding fertilizer hotspot and below it). In the pot study, OMF15C caused 24% lower biomass and less nutrient recovery derived from fertilizer (N, 11% and P, 8.5%), compared to MFNP. In the incubation study, OMF15C exhibited +19% atom% 15N excess in the combined two soil layers, relative to MFNP, and +28% 33P radioactivity in the soil surrounding the hotspot, and −89% in the soil below it. We interpreted this as a reduction in nutrient availability of the combined VC + mineral fertilizers, due to lower P mobility in soil. The combination of VC with mineral fertilizers can reduce P movement in soil. A higher Corg:N:P ratio resulted in lower nutrient use efficiency in 2 months.

OriginalsprogEngelsk
Artikelnummere20473
TidsskriftAgrosystems, Geosciences and Environment
Vol/bind7
Udgave nummer1
Antal sider15
ISSN2639-6696
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
The authors gratefully acknowledge staff from the Plant Nutrition Group of ETH Zurich, namely Dr. L. Schönholzer, M. Macsai, and Dr. F. Tamburini for assistance in the experimental and analytical work. Authors also thanks Stefano Tagliavini from Scam S.p.A. for valuable suggestions on OMF. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 860127.

Funding Information:
The authors gratefully acknowledge staff from the Plant Nutrition Group of ETH Zurich, namely Dr. L. Schönholzer, M. Macsai, and Dr. F. Tamburini for assistance in the experimental and analytical work. Authors also thanks Stefano Tagliavini from Scam S.p.A. for valuable suggestions on OMF. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie grant agreement No. 860127.

Publisher Copyright:
© 2024 The Authors. Agrosystems, Geosciences & Environment published by Wiley Periodicals LLC on behalf of Crop Science Society of America and American Society of Agronomy.

ID: 384351899