Intraoperative Sentinel Lymph Node Evaluation: Implications of Cytokeratin 19 Expression for the Adoption of OSNA in Oral Squamous Cell Carcinoma

Research output: Contribution to journalJournal articleResearchpeer-review

BACKGROUND: Intraoperative analysis of sentinel lymph nodes would enhance the care of early-stage oral squamous cell carcinoma (OSCC). We determined the frequency and extent of cytokeratin 19 (CK19) expression in OSCC primary tumours and surrounding tissues to explore the feasibility of a "clinic-ready" intraoperative diagnostic test (one step nucleic acid amplification-OSNA, sysmex).

METHODS: Two cohorts were assembled: cohort 1, OSCC with stage and site that closely match cases suitable for sentinel lymph node biopsy (SLNB); cohort 2, HNSCC with sufficient fresh tumour tissue available for the OSNA assay (>50 mg). CK19 assays included qRT-PCR, RNA in situ hybridisation (ISH), and immunohistochemistry (IHC), as well as OSNA.

RESULTS: CK19 mRNA expression was detected with variable sensitivity, depending on method, in 60-80% of primary OSCC tumours, while protein expression was observed in only 50% of tumours. Discordance between different techniques indicated that OSNA was more sensitive than qRT-PCR or RNA-ISH, which in turn were more sensitive than IHC. OSNA results showed CK19 expression in 80% of primary cases, so if used for diagnosis of lymph node metastasis would lead to a false-negative result in 20% of patients with cervical lymph node metastases.

CONCLUSIONS: OSNA in its current form is not suitable for use in OSCC SLNB due to inadequate expression of the CK19 target in all case. However, the same assay technology would likely be very promising if applied using a more ubiquitous squamous epithelial target.

Original languageEnglish
JournalAnnals of Surgical Oncology
Volume23
Issue number12
Pages (from-to)4042-4048
Number of pages7
ISSN1068-9265
DOIs
Publication statusPublished - Nov 2016

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 173917284