Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification

Research output: Contribution to journalReviewResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.3 MB, PDF document

Humans have widespread exposure to both oxidants, and soft electrophilic compounds such as alpha,beta-unsaturated aldehydes and quinones. Electrophilic motifs are commonly found in a drugs, industrial chemicals, pollutants and are also generated via oxidant-mediated degradation of biomolecules including lipids (e.g. formation of 4-hydroxynonenal, 4-hydroxyhexenal, prostaglandin J2). All of these classes of compounds react efficiently with Cys residues, and the particularly the thiolate anion, with this resulting in Cys modification via either oxidation or adduct formation. This can result in deleterious or beneficial effects, that are either reversible (e.g. in cell signalling) or irreversible (damaging). For example, acrolein is a well-established toxin, whereas dimethylfumarate is used in the treatment of multiple sclerosis and psoriasis. This short review discusses the targets of alpha,beta-unsaturated aldehydes, and particularly two prototypic cases, acrolein and dimethylfumarate, and the factors that control the selectivity and kinetics of reaction of these species. Comparison is made between the reactivity of oxidants versus soft electrophiles. These rate constants indicate that electrophiles can be significant thiol modifying agents in some situations, as they have rate constants similar to or greater than species such as H2O2, can be present at higher concentrations, and are less efficiently removed by protective systems when compared to H2O2. They may also induce similar or higher levels of modification than highly reactive oxidants, due to the very low concentrations of oxidants formed in most in vivo situations.

Original languageEnglish
Article number109344
JournalArchives of Biochemistry and Biophysics
Volume727
Number of pages10
ISSN0003-9861
DOIs
Publication statusPublished - 30 Sep 2022

Bibliographical note

Funding Information:
The authors are grateful to the Novo Nordisk Foundation for financial support (grants: NNF13OC0004294 and NNF20SA0064214 to MJD).

Publisher Copyright:
© 2022 The Authors

    Research areas

  • Acrolein, alpha,beta-unsaturated aldehydes, Cysteine, Dimethylfumarate, Keap1, Michael addition, Protein modification, Protein oxidation, Quinones, Soft electrophiles

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 314391633