Quantitative proteome comparison of human hearts with those of model organisms

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.

Original languageEnglish
Article numbere3001144
JournalPLOS Biology
Volume19
Issue number4
Number of pages22
ISSN1544-9173
DOIs
Publication statusPublished - 2021

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 260517887