Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

Research output: Contribution to journalJournal articleResearchpeer-review

Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration difference was increased in T during the clamp but not in S subjects in both adipose tissue and muscle [adipose tissue: step I (n = 8), 0.48 +/- 0.18 mM (T), 0.23 +/- 0.11 mM (S); step II (n = 8), 0.19 +/- 0.09 (T), -0.09 +/- 0.24 (S); step III (n = 5), 0.47 +/- 0.24 (T), 0.06 +/- 0.28 (S); (T: P < 0.001, S: P > 0.05); muscle: step I (n = 4), 1. 40 +/- 0.46 (T), 0.31 +/- 0.21 (S); step II (n = 4), 1.14 +/- 0.54 (T), -0.08 +/- 0.14 (S); step III (n = 4), 1.23 +/- 0.34 (T), 0.24 +/- 0.09 (S); (T: P < 0.01, S: P > 0.05)]. Interstitial glycerol concentration decreased faster in T than in S subjects [half-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P < 0.05]. In conclusion, training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis in subcutaneous adipose tissue. Insulin per se does not influence subcutaneous adipose tissue blood flow.
Original languageEnglish
JournalAmerican Journal of Physiology: Endocrinology and Metabolism
Volume279
Issue number2
Pages (from-to)E376-E385
Number of pages10
ISSN0193-1849
Publication statusPublished - 2000

Bibliographical note

Keywords: 3-Hydroxybutyric Acid; Adipose Tissue; Adult; Blood Glucose; Catecholamines; Energy Metabolism; Extracellular Space; Fatty Acids, Nonesterified; Glucose; Glucose Clamp Technique; Glycerol; Hemodynamics; Humans; Infusions, Intravenous; Insulin; Lactic Acid; Lipolysis; Male; Muscle, Skeletal; Physical Endurance; Physical Fitness; Radial Artery; Triglycerides

ID: 185334