Increased Postprandial GIP and Glucagon Responses, But Unaltered GLP-1 Response after Intervention with Steroid Hormone, Relative Physical Inactivity, And High-Calorie Diet in Healthy Subjects

Research output: Contribution to journalJournal articleResearchpeer-review

Objective:Increased postprandial glucose-dependent insulinotropic polypeptide (GIP) and glucagon responses and reduced postprandial glucagon-like peptide-1 (GLP-1) responses have been observed in some patients with type 2 diabetes mellitus. The causality of these pathophysiological traits is unknown. We aimed to determine the impact of insulin resistance and reduced glucose tolerance on postprandial GIP, GLP-1, and glucagon responses in healthy subjects.

Research Design and Methods:A 4-h 2200 KJ-liquid meal test was performed in 10 healthy Caucasian males without family history of diabetes [age, 24 ± 3 yr (mean ± sd); body mass index, 24 ± 2 kg/m2; fasting plasma glucose, 4.9 ± 0.3 mm; hemoglobin A1c, 5.4 ± 0.1%] before and after intervention using high-calorie diet, relative physical inactivity, and administration of prednisolone (37.5 mg/d) for 12 d.

Results:The intervention resulted in insulin resistance according to the homeostatic model assessment [1.1 ± 0.3 vs. 2.3 (mean ± sem) ± 1.3; P = 0.02] and increased postprandial glucose excursions [area under curve (AUC), 51 ± 28 vs. 161 ± 32 mm · 4 h; P = 0.045], fasting plasma insulin (36 ± 3 vs. 61 ± 6 pm; P = 0.02), and postprandial insulin responses (AUC, 22 ± 6 vs. 43 ± 13 nm · 4 h; P = 0.03). This disruption of glucose homeostasis had no impact on postprandial GLP-1 responses (AUC, 1.5 ± 0.7 vs. 2.0 ± 0.5 nm · 4 h; P = 0.56), but resulted in exaggerated postprandial GIP (6.2 ± 1.0 vs. 10.0 ± 1.3 nm · 4 h; P = 0.003) and glucagon responses (1.6 ± 1.5 vs. 2.4 ± 3.2; P = 0.007).

Conclusions:These data suggest that increased postprandial GIP and glucagon responses may occur as a consequence of insulin resistance and/or reduced glucose tolerance. Our data suggest that acute disruption of glucose homeostasis does not result in reduced postprandial GLP-1 responses as observed in some individuals with type 2 diabetes mellitus.

Original languageEnglish
JournalJournal of Clinical Endocrinology and Metabolism
Volume96
Issue number2
Pages (from-to)447-53
Number of pages7
ISSN0021-972X
DOIs
Publication statusPublished - 2011

    Research areas

  • Adult, Area Under Curve, Blood Glucose, C-Peptide, Diet, Energy Intake, Fasting, Gastric Inhibitory Polypeptide, Glucagon, Glucagon-Like Peptide 1, Humans, Insulin, Insulin Resistance, Insulin-Secreting Cells, Male, Motor Activity, Postprandial Period, Prednisolone, Young Adult

ID: 34145284