Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. / Garner, B; Davies, Michael Jonathan; Truscott, R J.

In: Experimental Eye Research, Vol. 70, No. 1, 01.2000, p. 81-8.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Garner, B, Davies, MJ & Truscott, RJ 2000, 'Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract', Experimental Eye Research, vol. 70, no. 1, pp. 81-8. https://doi.org/10.1006/exer.1999.0754

APA

Garner, B., Davies, M. J., & Truscott, R. J. (2000). Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Experimental Eye Research, 70(1), 81-8. https://doi.org/10.1006/exer.1999.0754

Vancouver

Garner B, Davies MJ, Truscott RJ. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Experimental Eye Research. 2000 Jan;70(1):81-8. https://doi.org/10.1006/exer.1999.0754

Author

Garner, B ; Davies, Michael Jonathan ; Truscott, R J. / Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. In: Experimental Eye Research. 2000 ; Vol. 70, No. 1. pp. 81-8.

Bibtex

@article{9d6fd8e9278848c49fbeba8350f9e2dd,
title = "Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract",
abstract = "Recent studies have identified specific hydroxylated amino acid oxidation products which strongly suggest the presence of hydroxyl radical (HO.)-damaged proteins in human cataractous lenses. In the present study, the ability of early stage (type II) and advanced (type IV) nuclear cataractous lens homogenates to catalyse HO. production in the presence of H(2)O(2)was investigated using electron paramagnetic resonance (EPR) spectroscopy with the free radical trap, 5,5-dimethyl-1-pyrroline- N -oxide (DMPO). Cataractous lens homogenates incubated with 1 m m H(2)O(2)generated a distinct HO. signal, which was significantly more intense in the nuclear region of the type IV compared to the type II lenses. The ability of individual lens nuclei and cortices to stimulate HO. production was positively correlated. The DMPO-HO. signal was competitively inhibited by ethanol, confirming that the DMPO-HO. signal was due to HO. formation and not DMPO-OOH degradation. The metal ion chelator, diethylenetriaminepentaacetic acid, also inhibited HO. formation, indicating that lenticular metal ions play a key role in HO. formation. Cataractous lens homogenates also stimulated ascorbyl radical production, further suggesting the presence of redox-active metal ions in the tissue. Analysis of lenses for total Fe and Cu (using atomic absorption spectrometry) showed that the more advanced type IV lenses tended to have higher Fe, but similar Cu, levels compared to the type II lenses. The levels of both metals were lower in non-cataractous lenses. These data support the hypothesis that transition metal-mediated HO. production may play a role in the aetiology of age-related nuclear cataract.",
keywords = "Ascorbic Acid, Cataract, Copper, Humans, Hydrogen Peroxide, Hydroxyl Radical, Iron, Lens, Crystalline, Oxidation-Reduction, Spectrophotometry, Atomic",
author = "B Garner and Davies, {Michael Jonathan} and Truscott, {R J}",
note = "Copyright 2000 Academic Press.",
year = "2000",
month = jan,
doi = "10.1006/exer.1999.0754",
language = "English",
volume = "70",
pages = "81--8",
journal = "Experimental Eye Research",
issn = "0014-4835",
publisher = "Academic Press",
number = "1",

}

RIS

TY - JOUR

T1 - Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract

AU - Garner, B

AU - Davies, Michael Jonathan

AU - Truscott, R J

N1 - Copyright 2000 Academic Press.

PY - 2000/1

Y1 - 2000/1

N2 - Recent studies have identified specific hydroxylated amino acid oxidation products which strongly suggest the presence of hydroxyl radical (HO.)-damaged proteins in human cataractous lenses. In the present study, the ability of early stage (type II) and advanced (type IV) nuclear cataractous lens homogenates to catalyse HO. production in the presence of H(2)O(2)was investigated using electron paramagnetic resonance (EPR) spectroscopy with the free radical trap, 5,5-dimethyl-1-pyrroline- N -oxide (DMPO). Cataractous lens homogenates incubated with 1 m m H(2)O(2)generated a distinct HO. signal, which was significantly more intense in the nuclear region of the type IV compared to the type II lenses. The ability of individual lens nuclei and cortices to stimulate HO. production was positively correlated. The DMPO-HO. signal was competitively inhibited by ethanol, confirming that the DMPO-HO. signal was due to HO. formation and not DMPO-OOH degradation. The metal ion chelator, diethylenetriaminepentaacetic acid, also inhibited HO. formation, indicating that lenticular metal ions play a key role in HO. formation. Cataractous lens homogenates also stimulated ascorbyl radical production, further suggesting the presence of redox-active metal ions in the tissue. Analysis of lenses for total Fe and Cu (using atomic absorption spectrometry) showed that the more advanced type IV lenses tended to have higher Fe, but similar Cu, levels compared to the type II lenses. The levels of both metals were lower in non-cataractous lenses. These data support the hypothesis that transition metal-mediated HO. production may play a role in the aetiology of age-related nuclear cataract.

AB - Recent studies have identified specific hydroxylated amino acid oxidation products which strongly suggest the presence of hydroxyl radical (HO.)-damaged proteins in human cataractous lenses. In the present study, the ability of early stage (type II) and advanced (type IV) nuclear cataractous lens homogenates to catalyse HO. production in the presence of H(2)O(2)was investigated using electron paramagnetic resonance (EPR) spectroscopy with the free radical trap, 5,5-dimethyl-1-pyrroline- N -oxide (DMPO). Cataractous lens homogenates incubated with 1 m m H(2)O(2)generated a distinct HO. signal, which was significantly more intense in the nuclear region of the type IV compared to the type II lenses. The ability of individual lens nuclei and cortices to stimulate HO. production was positively correlated. The DMPO-HO. signal was competitively inhibited by ethanol, confirming that the DMPO-HO. signal was due to HO. formation and not DMPO-OOH degradation. The metal ion chelator, diethylenetriaminepentaacetic acid, also inhibited HO. formation, indicating that lenticular metal ions play a key role in HO. formation. Cataractous lens homogenates also stimulated ascorbyl radical production, further suggesting the presence of redox-active metal ions in the tissue. Analysis of lenses for total Fe and Cu (using atomic absorption spectrometry) showed that the more advanced type IV lenses tended to have higher Fe, but similar Cu, levels compared to the type II lenses. The levels of both metals were lower in non-cataractous lenses. These data support the hypothesis that transition metal-mediated HO. production may play a role in the aetiology of age-related nuclear cataract.

KW - Ascorbic Acid

KW - Cataract

KW - Copper

KW - Humans

KW - Hydrogen Peroxide

KW - Hydroxyl Radical

KW - Iron

KW - Lens, Crystalline

KW - Oxidation-Reduction

KW - Spectrophotometry, Atomic

U2 - 10.1006/exer.1999.0754

DO - 10.1006/exer.1999.0754

M3 - Journal article

C2 - 10644423

VL - 70

SP - 81

EP - 88

JO - Experimental Eye Research

JF - Experimental Eye Research

SN - 0014-4835

IS - 1

ER -

ID: 138281859