IKs Gain- and Loss-of-Function In Early-Onset Lone Atrial Fibrillation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

INTRODUCTION: Atrial fibrillation (AF) is the most frequent cardiac arrhythmia. The potassium current IKs is essential for cardiac repolarization. Gain-of-function mutation in KCNQ1, the gene encoding the pore-forming α-subunit of the IKs channel (KV 7.1), was the first ion channel dysfunction to be associated with familial AF. We hypothesized that early-onset lone AF is associated with a high prevalence of mutations in KCNQ1.

METHODS AND RESULTS: We bidirectionally sequenced the entire coding sequence of KCNQ1 in 209 unrelated patients with early-onset lone AF (<40 years) and investigated the identified mutations functionally in a heterologous expression system. We found four non-synonymous KCNQ1 mutations (A46T, R195W, A302V, and R670K) in 4 unrelated patients (38, 31, 39, and 36 years, respectively). None of the mutations were present in the control group (n = 416 alleles). No other mutations were found in genes previously associated with AF. The mutations A46T, R195W, and A302V have previously been associated with long-QT syndrome. In line with previous reports, we found A302V to display a pronounced loss-of-function of the IKs current, while the other mutants exhibited a gain-of-function phenotype.

CONCLUSIONS: Mutations in the IKs channel leading to gain-of-function have previously been described in familial AF, yet this is the first time a loss-of-function mutation in KCNQ1 is associated with early-onset lone AF. These findings suggest that both gain-of function and loss-of-function of cardiac potassium currents enhances the susceptibility to AF. This article is protected by copyright. All rights reserved.

OriginalsprogEngelsk
TidsskriftJournal of Cardiovascular Electrophysiology
Vol/bind26
Udgave nummer7
Sider (fra-til)715-23
Antal sider9
ISSN1045-3873
DOI
StatusUdgivet - 2015

ID: 136255849