GPR41/FFAR3 and GPR43/FFAR2 as Cosensors for Short-Chain Fatty Acids in Enteroendocrine Cells vs FFAR3 in Enteric Neurons and FFAR2 in Enteric Leukocytes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

The expression of short-chain fatty acid receptors GPR41/FFAR3 and GPR43/ free fatty acid receptor 2 (FFAR2) was studied in the gastrointestinal tract of transgenic monomeric red fluorescent protein (mRFP) reporter mice. In the stomach free fatty acid receptor 3 (FFAR3)-mRFP was expressed in a subpopulation of ghrelin and gastrin cells. In contrast, strong expression of FFAR3-mRFP was observed in all cholecystokinin, gastric inhibitory peptide, and secretin cells of the proximal small intestine and in all glucagon-like peptide-1 (GLP-1), peptide YY, and neurotensin cells of the distal small intestine. Throughout the colon and rectum, FFAR3-mRFP was strongly expressed in the large population of peptide YY and GLP-1 cells and in the neurotensin cells of the proximal colon. A gradient of expression of FFAR3-mRFP was observed in the somatostatin cells from less than 5% in the stomach to more than 95% in the rectum. Substance P-containing enterochromaffin cells displayed a similar gradient of FFAR3-mRFP expression throughout the small intestine. Surprisingly, FFAR3-mRFP was also expressed in the neuronal cells of the submucosal and myenteric ganglia. Quantitative PCR analysis of fluorescence-activated cell sorter FFAR3-mRFP positive cells confirmed the coexpression with the various peptide hormones as well as key neuronal marker proteins. The FFAR2-mRFP reporter was strongly expressed in a large population of leukocytes in the lamina propria of in particular the small intestine but surprisingly only weakly in a subpopulation of enteroendocrine cells. Nevertheless, synthetic ligands specific for either FFAR3 or FFAR2 each released GLP-1 from colonic crypt cultures and the FFAR2 agonist mobilized intracellular Ca(2+) in FFAR2 positive enteroendocrine cells. It is concluded that FFAR3-mRFP serves as a useful marker for the majority of enteroendocrine cells of the small and large intestine and that FFAR3 and FFAR2 both act as sensors for short-chain fatty acids in enteroendocrine cells, whereas FFAR3 apparently has this role alone in enteric neurons and FFAR2 in enteric leukocytes.
StatusUdgivet - 24 jul. 2013

ID: 47895625