Depth of Sequencing Plays a Determining Role in the Characterization of Phage Display Peptide Libraries by NGS

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,92 MB, PDF-dokument

Next-generation sequencing (NGS) has raised a growing interest in phage display research. Sequencing depth is a pivotal parameter for using NGS. In the current study, we made a side-by-side comparison of two NGS platforms with different sequencing depths, denoted as lower-throughput (LTP) and higher-throughput (HTP). The capacity of these platforms for characterization of the composition, quality, and diversity of the unselected Ph.D.TM-12 Phage Display Peptide Library was investigated. Our results indicated that HTP sequencing detects a considerably higher number of unique sequences compared to the LTP platform, thus covering a broader diversity of the library. We found a larger percentage of singletons, a smaller percentage of repeated sequences, and a greater percentage of distinct sequences in the LTP datasets. These parameters suggest a higher library quality, resulting in potentially misleading information when using LTP sequencing for such assessment. Our observations showed that HTP reveals a broader distribution of peptide frequencies, thus revealing increased heterogeneity of the library by the HTP approach and offering a comparatively higher capacity for distinguishing peptides from each other. Our analyses suggested that LTP and HTP datasets show discrepancies in their peptide composition and position-specific distribution of amino acids within the library. Taken together, these findings lead us to the conclusion that a higher sequencing depth can yield more in-depth insights into the composition of the library and provide a more complete picture of the quality and diversity of phage display peptide libraries.

OriginalsprogEngelsk
Artikelnummer5396
TidsskriftInternational Journal of Molecular Sciences
Vol/bind24
Udgave nummer6
Antal sider13
ISSN1661-6596
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
This research received funding from the Lundbeck Foundation, European Union’s Horizon 2020 research and innovation programme under grant agreements no. 670261 (ERC Advanced Grant) and 668532 (Click-It), the Novo Nordisk Foundation, the Innovation Fund Denmark, the Neuroendocrine Tumor Research Foundation, the Danish Cancer Society, Arvid Nilsson Foundation, the Neye Foundation, the Sygeforsikringen danmark, the Research Foundation of Rigshospitalet, the Danish National Research Foundation (grant 126)—PERSIMUNE, the Research Council of the Capital Region of Denmark, the Danish Health Authority, the John and Birthe Meyer Foundation and Research Council for Independent Research. Andreas Kjaer is a Lundbeck Foundation Professor.

Publisher Copyright:
© 2023 by the authors.

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 343075445